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1 Recap of General QM

1.1 The Schrödinger equation

We of course all know the Schrödinger equation:

Hψ = Eψ

−~2

2m

∂2ψ

∂x2
+ V (x)ψ = Eψ

When generalizing to 3 dimensions, momentum becomes:

p→ ~
i
∇

Thus:

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + VΨ.

Here

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

of course is the Laplacian. The potential energy and the wave function now are functions of r = (x, y, z)
and t. The normalization condition now reads∫

|Ψ|2d3r =, 1

with the integral taken over all space and the infinitesimal volume d3r = dx dy dz. If the potential is
independent of time we can still use the separation of variables and there will be a complete set of stationary
states:

Ψn(r, t) = ψn(r) e−iEnt/~.

And the the time-independent Schrödinger equation becomes:

− ~2

2m
∇2ψ + V ψ = Eψ

1.1.1 Seperation of Variables

To make our lives easier in the long run we want to adopt spherical coordinates, (r, θ, φ),

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ.
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1.2 Angular and radial wavefunctions Summary by Ellis de Wit

In spherical coordinates the Laplacian takes the form

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.

In spherical coordinates, then, the time-independent Schrödinger equation reads

− ~2

2m

[
1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2

]
+ V ψ = Eψ

We begin by looking for solutions that are separable into products:

ψ(r, θ, φ) = R(r)Y (θ, φ)

Some derivation later gives us two equations, one that only depends on r and one that depends on θ and φ.
Both must be a constant, we will write this “separation constant” in the form l(l + 1):

1

R

d

dr

(
r2 dR

dr

)
− 2mr2

~2
[V (r)− E] = l(l + 1);

1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

]
= −l(l + 1).

1.2 Angular and radial wavefunctions

1.2.1 The Angular Equation

First we will look at the angular equation, that depends on θ and φ. For this equation we can once again
use separation of variables:

Y (θ, φ) = Θ(θ)Φ(φ).

This again gives us two equations, one that only depends on θ and one that only depends on φ. Again both
must be a constant, this time we will call the separation constant m2:

1

Θ

[
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ l(l + 1) sin2 θ = m2;

1

Φ

d2Φ

dφ2
= −m2.

The general solution of Φ(φ) then is
Φ(φ) = eimφ,

here m is an integer that can be positive and negative. Also it is natural to require that

Φ(φ+ 2π) = Φ(φ)

The general solution of Θ(θ) isn’t that easy. The solution is

Θ(θ) = APml (cos θ),

here Pml is the associated Legendre function, defined by

Pml (x) ≡ (1− x2)|m|/2
(
d

dx

)|m|
Pl(x),

and Pl(x) is the lth Legendre polynomial, defined by the Rodrigues formula:

Pl(x) ≡ 1

2ll!

(
d

dx

)l
(x2 − 1)l.
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1.3 Basic quantum numbers Summary by Ellis de Wit

Important to note is that l must be a nonnegative integer and that the values of m range from −l to l,
with integer intervals, because of this for any given l there are (2l+ 1) possible values of m. Mathematically
speaking there exist solutions for any old values of l and m, but physically speaking some solutions are
unacceptable.

The normalized angular wave functions are called spherical harmonics:

Y ml (θ, φ) = ε

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

eimφPml (cos θ),

here ε = (−1)m for m ≥ 0 and ε = 1 for m ≤ 0. These are automatically orthogonal, so∫ 2π

0

∫ π

0

[Y ml (θ, φ)]
∗
[
Y m

′

l′ (θ, φ)
]

sin θ dθ dφ = δll′δmm′ .

For historical reasons, l is called the azimuthal quantum number, and m the magnetic quantum
number.

1.2.2 The Radial Equation

Notice that the angular part of the wave function, Y (θ, φ), is the same for all spherically symmetric potentials;
the actual shape of the potential, V (r), affects only the radial part of the wave function, R(r).
The radial equation is given by[

− ~2

2m

d2

dr2
+

~2l(l + 1)

2mr2
+ V

]
Pnl(r) = EPnl(r)

here the m’s are masses and
Pnl(r) ≡ rR(r).

As you can see the radial equation is identical in form to the one-dimensional Schrödinger equation, except
that the effective potential contains an extra term called the centrifugal term. It tends to throw the
particle outward (away from the origin).
For the radial equation the normalization condition becomes∫ ∞

0

|Pnl|2 dr = 1.

This is all we can do with the radial part of the wave function until a specific potential V (r) is provided.

1.3 Basic quantum numbers

Due to different energy levels, the separation of variables and spin multiple quantum numbers are introduced:

Name Symbol Orbital meaning Range of values Value examples

Principal quantum number n shell 1 ≥ n n = 1, 2, 3, . . .

Azimuthal quantum number (an-
gular momentum)

l subshell 0 ≤ l ≤ n− 1
for n = 3:
l = 0, 1, 2

Magnetic quantum number (pro-
jection of angular momentum)

ml energy shift −l ≤ ml ≤ l
for l = 2:

ml = −2,−1, 0, 1, 2

Spin quantum number ms spin of the electron −s ≤ ms ≤ s
for s = 1

2
:

ms = − 1
2
, 1
2
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1.3 Basic quantum numbers Summary by Ellis de Wit

In the spectroscopic notation l gets assigned letters in place of the numbers:

l = 0→ s

l = 1→ p

l = 2→ d

l = 3→ f

l = 4→ g, etc.

After this the order follows the alphabet, with either i or j. The electron shells get filled according to this
table.

n
l

s p d f g

1 2 - - - -

2 2 6 - - -

3 2 6 10 - -

4 2 6 10 14 -

The numbers in the table indicate the total number of atoms that each shell can hold and the arrows indicate
the order in which the shells get filled, so the 1s shell gets filled first, then 2s, 2p, 3s and so on. Another
way to express the state of an atom is using the following notation:

2S+1LJ ,

with S as the total spin, L as the total orbital angular momentum and J as the grand total (orbital plus
spin).

Only the quantum number n is needed to specify the energy of an electron in a hydrogen atom, but to specify
the motion of an electron moving in three dimensions the value of the square of the angular momentum l2

and the z-component of the angular momentum lz are also needed.

1.3.1 The Orbital Angular Momentum

The eigenvalues of l2 and lz are given by

l2fml = l(l + 1)~2fml and lzf
m
l = ml~fml ,

where

l = 0, 1/2, 1, 3/2, ...; ml = −l,−l + 1, ..., l − 1, l,

and the eigenfunctions are characterized by the numbers l and m. For a given value of l, there are 2l + 1
different values of ml (i.e., 2l + 1 “rungs” on the “ladder”). The magnitude of l is given by

|l| =
√
l(l + 1)~

The orientations in space of the vector l correspond to the different values of ml~. The cosine of the angle
between l and the z-axis is lz/|l|, which is equal to ml/

√
l(l + 1). Quantum theory thus predicts that for

a given value of l only certain orientations of the angular momentum vector in space are allowed. This is
called space quantization.
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Summary by Ellis de Wit

1.3.2 Spin of the Electron

Spin works in a very similar way to angular momentum. The eigenvalues of s2 and sz are given by

s2fml = s(s+ 1)~2fml and szf
m
l = ms~fml ,

where

s = 0, 1/2, 1, 3/2, ...; ms = −s,−s+ 1, ..., s− 1, s,

and the eigenfunctions are characterized by the numbers s and m. For a given value of s, there are 2s + 1
different values of ms (i.e., 2s+ 1 “rungs” on the “ladder”). The magnitude of s is given by

|s| =
√
s(s+ 1)~

The orientations in space of the vector s correspond to the different values of ms~. The cosine of the angle
between s and the z-axis is sz/|s|, which is equal to ms/

√
s(s+ 1). Quantum theory thus predicts that for

a given value of s only certain orientations of the angular momentum vector in space are allowed.

2 The Hydrogen Atom and (Quasi-) One-Electron Systems

The hydrogen atom is the simplest of all: it consists of a heavy, essentially motionless proton, of charge e,
together with a much lighter electron (charge −e) that orbits around it, bound by the mutual attraction of
opposite charges. From Coulomb’s law, the potential energy is

V (r) = − e2

4πε0

1

r

All atoms with a similar structure, of a nucleus with 1 electron, are called hydrogen like, or hydrogenic.
Some examples include He+, O7+ and U91+.

2.1 The Radial Wavefunction

The angular wavefunction stays the same as in the general case

The radial equation now is [
− ~2

2m

d2

dr2
− e2

4πε0

1

r
+

~2

2m

l(l + 1)

r2

]
Pnl = EPnl,

and we will be looking at the discrete bound states, representing the hydrogen atom.
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2.1 The Radial Wavefunction Summary by Ellis de Wit

The allowed energies of this equation are given by the Bohr formula:

En = −

[
m

2h̄2

(
e2

4πε0

)2
]

1

n2
=
E1

n2
, with n = 1, 2, 3, ...

The energy of the ground state is given by:

E1 = −

[
m

2h̄2

(
e2

4πε0

)2
]

= −13.6 eV

Evidently the binding energy of hydrogen (the amount of energy you would have to impart to the electron
in the ground state in order to ionize the atom) is 13.6 eV.

The most probable distance between the nucleus and the electron in a hydrogen atom in its ground state is
the so-called Bohr radius and is given by

a0 ≡
4πε0h̄

2

me2
= 0.529× 10−10 m

2.1.1 Plots of the Radial Wavefunction

Plots of the radial part will have n− l − 1 nodes. By a node, we mean a zero crossing of the function other
than the zero at the origin. So the principal quantum number n can be expressed as:

n = l + ν + 1

where ν is the number of nodes.

2.1.2 The Wave Functions of Hydrogen

The normalized hydrogen wave functions are

ψnlm(r, θ, φ) = Rnl(r)Y
m
l (θ, φ)

=

√(
2

na

)3
(n− l − 1)!

2n[(n+ l)!]3
e−r/na

(
2r

na

)l [
L2l+1
n−l−1(2r/na)

]
Y ml (θ, φ).

Here

Lpq−p(x) ≡ (−1)p
(

d

dx

)p
Lq(x)

is an associated Laguerre polynomial, and

Lq(x) ≡ ex
(

d

dx

)q
(e−xxq)

is the qth Laguerre polynomial.

The ground state of hydrogen is given by

ψ100(r, θ, φ) =
1√
πa3

e−r/a

2.1.3 Basic quantum numbers

We already went over these lol
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2.2 Selection Rules Summary by Ellis de Wit

2.1.4 The Energy Levels of Hydrogen and Bohr’s Approximation

The energy of an electron in the hydrogen atom is given by the following equation:

En = −13.6 eV

n2

where the principal quantum number n has the possible values, n = 1, 2, 3, . . . . Bohr’s approximation
expands this formula to all one-electron systems:

Enlm ≈ En = −13.6
Z2

n2
[eV]

2.2 Selection Rules

The selection rules for radiative transitions are:

∆l = ±1 for all polarizations

∆ml =

{
0 for z-polarized light,

±1 for x- and y-polarized light

2.3 The Fine Structure of Hydrogen

2.3.1 The Magnetic Moment of the Electron

An electron circulating about the nucleus of an atom can be expected to behave like a current loop which
interacts with an external magnetic field. This current gives rise to a magnetic dipole moment, which has a
magnitude given by |µl|.

µl =
−e

2me
|l|

The ratio of a magnetic moment to the angular momentum giving rise to the magnetic moment is called the
gyromagnetic ratio.

|µl|
|l|

=
e

2me

Looking at the z component of the magnetic moment and substituting in the z component of the angular
momentum gives the Bohr magneton:

µB =
e~

2me
= 9.27× 10−24 JT−1

2.3.2 The Spin of the Electron

An atomic electron has a magnetic moment due to its spin just as the electron has a magnetic moment due
to its orbital motion. The magnetic moment associated with the spin of the electron is given by the following
equation:

µs =
−e

2me
gs|s|

Here the constant gs is called the g-value of the spin. Angular momentum also has a g-value; gl = 1. The
gyromagnetic ratio associated with the spin of the electron is

|µs|
|s|

=
−egs
2me

The total magnetic moment of the electron is given by

µ =
−e

2me
(l + gss)
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2.3 The Fine Structure of Hydrogen Summary by Ellis de Wit

Since the electron and the nucleus are charged particles, their relative motion gives rise to magnetic fields
which are a property of the atom itself. This magnetic field interacts with the magnetic moment associated
with the spin of the electron, this interaction is called the spin-orbit interaction. If one takes gs equal to
two, the spin-orbit interaction of an electron with a potential energy V (r) is described by the following
Hamiltonian:

hs−o =
1

2m2c2
1

r

dV

dr
s · l

2.3.3 The Total Angular Momentum

The total angular momentum j is the sum of s and l:

j = l + s

It can take the following range of values, jumping only in integer steps:

|l − s| ≤ j ≤ l + s

2.3.4 The Fine Structure

Using the potential energy of the hydrogen atom the spin-orbit interaction can be written as

hs−o =
1

2m2c2
1

4πε0

Ze2

r3
s · l

With the average value of 1/r3 the spin-orbit interaction can be written as

hs−o = ζs · l

With the spin-orbit constant

ζ =
1

2m2c2
1

4πε0
Ze2

〈
1

r3

〉
and

s · l =
1

2
(j2 − s2 − l2)

2.3.5 The Zeeman Effect

Interaction with a magnetic field also gives splitting due to the Zeeman effect. The interaction of the
magnetic moment of the electron with the magnetic field may be described by the magnetic potential energy

Vmag = −µ ·B
= (e/2m)(l + gss) ·B
= (e/2m)B(lz + gssz)

We can make the following two replacements:

lz →
(j2 + l2 − s2)jz

2j(j + 1)~2
=
j(j + 1) + l(l + 1)− s(s+ 1)

2j(j + 1)
jz

sz →
(j2 − l2 + s2)jz

2j(j + 1)~2
=
j(j + 1)− l(l + 1) + s(s+ 1)

2j(j + 1)
jz

This then gives
Vmag = gj(e/2m)Bjz,

with

gj =
j(j + 1) + l(l + 1)− s(s+ 1)

2j(j + 1)
+ gs

j(j + 1)− l(l + 1) + s(s+ 1)

2j(j + 1)
.
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Summary by Ellis de Wit

Important to note:

l = 0→ j = s, gj = 2 = gs

s = 0→ j = l, gj = 1 = gl

This gives the following splitting of the energy levels:

∆E = gj(e/2m)Bmj~.

Or, with the Bohr magneton µB = e~/2m:

∆E = gjµBBmj .

There are two types of Zeeman effect:

• Normal Zeeman effect, the special type, S = 0

• Anomalous Zeeman effect, the common type, S 6= 0

2.3.6 The Paschen Back effect

If Bext is bigger than Bint we get the Paschen Back effect. Here l and s divorce, thus s-o coupling breaks
apart. Then:

V = −µl ·B− µs ·B
= glmlµBB + gsmsµBB

= (ml + 2ms)µBB

3 Many-electron atoms

Next we gonna look at many-electron systems. This means 2 or more electrons. We’re going to look at a
strategy example; the independent particle model with 2 electrons.

3.1 Independent particle model

3.1.1 Wavefunctions

The Hamiltonian for a two-electron atom may be written as:

H =− ~2

2m
∇2

1 −
1

4πε0

Ze2

r1
− ~2

2m
∇2

2 −
1

4πε0

Ze2

r2
+

1

4πε0

e2

r12

Ekin,1 Ep,1 Ekin,2 Ep,2 el-el interaction

r1 is the distance of the first electron from the nucleus and r2 is the distance of the second electron from the
nucleus. The distance between the two electrons is denoted by r12.
We can’t solve this Hamiltonian in the general way, so we want approximations.

The independent particle model approximates that each electron moves independently in an average
potential due to the nucleus and the electrons. This gives:

H0 =− ~2

2m
∇2

1 −
1

4πε0

Ze2

r1
+ u(r1)− ~2

2m
∇2

2 −
1

4πε0

Ze2

r2
+ u(r2)

= h0(1) + h0(2)

Then the simplest wave function, which describes the two electrons, is the product function

Φ = φa(1)φb(2)

with a being the quantum numbers of the first electron and b being those of the second one.
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3.2 Shell structure and the Periodic Table Summary by Ellis de Wit

3.1.2 Pauli exclusion principle

The wave functions of an atom must have the property that no two electrons are in the same state nlmlms.
This property is called the Pauli exclusion principle. Due to this, a wave function can only be formed by
taking an antisymmetric combination of wave functions:

Ψ =
1√
2

[φa(1)φb(2)− φa(2)φb(1)] =
1√
2

∣∣∣∣φa(1) φa(2)
φb(1) φb(2)

∣∣∣∣
All these ideas can be generalised for N electrons:

H0 = h0(1) + h0(2) + · · ·+ h0(N)

h0(i) = − ~2

2m
∇2
i −

1

4πε0

Ze2

ri
+ u(ri)

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣
φa(1) φa(2) · · · φa(N)
φb(1) φb(2) · · · φb(N)

...
...

. . .
...

φn(1) φn(2) · · · φN (N)

∣∣∣∣∣∣∣∣∣
This last wave function is called a Slater determinant.

3.1.3 Central field approximation

The central-field approximation assumes that the potential is spherically symmetric. This approximates
u(ri) as u(ri);

h0 = − ~2

2m
∇2 − 1

4πε0

Ze2

r1
+ u(r).

Then as the radial part of the wave function:[
− ~2

2m

d2

dr2
+

~2

2m

l(l + 1)

r2
− Ze2

4πε0

1

r
+ u(r)

]
Pnl(r) = EPnl(r).

Together − Ze2

4πε0
1
r and u(r) become:

−Zeffe
2

4πε0

1

ri

Here Zeff is the effective nuclear charge that the electron ”sees”.

In single-electron atoms, the energy only depends on the quantum number n. However, for electrons with
more than one electron, this doesn’t hold anymore. The difference between the energies of electrons with the
same value of n and a different value of l (the orbital angular momentum) originates from the motion of the
electrons in the charge distribution of the atom. Electrons with a smaller value of the angular momentum
come closer to the nucleus and see a larger effective nuclear charge. Since they move under the influence of a
larger effective charge, the lower angular momentum states of a many-electron atom are more tightly bound.

3.2 Shell structure and the Periodic Table

Due to different energy levels, the separation of variables and spin multiple quantum numbers are introduced:
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3.3 LS and jj coupling schemes Summary by Ellis de Wit

Name Symbol Orbital meaning Range of values Value examples

Principal quantum number n shell 1 ≥ n n = 1, 2, 3, . . .

Azimuthal quantum number (an-
gular momentum)

l subshell 0 ≤ l ≤ n− 1
for n = 3:
l = 0, 1, 2

Magnetic quantum number (pro-
jection of angular momentum)

ml energy shift −l ≤ ml ≤ l
for l = 2:

ml = −2,−1, 0, 1, 2

Spin quantum number ms spin of the electron −s ≤ ms ≤ s
for s = 1

2
:

ms = − 1
2
, 1
2

In the spectroscopic notation l gets assigned letters in place of the numbers:

l = 0→ s

l = 1→ p

l = 2→ d

l = 3→ f

l = 4→ g, etc.

After this the order follows the alphabet, with either i or j. The electron shells get filled according to this
table.

n
l

s p d f g

1 2 - - - -

2 2 6 - - -

3 2 6 10 - -

4 2 6 10 14 -

The numbers in the table indicate the total number of atoms that each shell can hold and the arrows indicate
the order in which the shells get filled, so the 1s shell gets filled first, then 2s, 2p, 3s and so on.

Due to the Pauli exclusion principle, a subshell with quantum numbers n and l can contain no more than
2(2l + 1) electrons. A subshell which has all orbitals occupied is said to be filled or closed, while a partially
filled subshell is said to be open. The lowest energy for a particular atom can be obtained by successively
filling the lowest-lying subshells. The electron configuration of the lowest state, which is called the ground
configuration, would then consists of a number of closed subshells and at most one open subshell. This
leads to the historically important building-up principle or Aufbau principle. Due to changes in the average
central field and Coulomb interaction, the electrons depart from the central field description in some ways.

Filled shells have L = 0; S = 0.

3.3 LS and jj coupling schemes

The LS and jj coupling schemes differ a bit from each other, using an example this difference will be shown.
In this example we have a p electron with l1 = 1 and s1 = 1/2 and a an s electron with l2 = 0 and s2 = 1/2.
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3.3 LS and jj coupling schemes Summary by Ellis de Wit

3.3.1 jj coupling

l1 + l2 + l3 + · · · = L

+ + +

s1 + s2 + s3 + · · · = S

↓ ↓ ↓
j1 + j2 + j3 + · · · = J

Then the example gives:

j1 = 1 + 1/2 = 1/2, 3/2

j2 = 0 + 1/2 = 1/2

J = 1/2 + 1/2 = 0, 1

or J = 3/2 + 1/2 = 1, 2

This then gives the states: (
1

2
,

1

2

)
0,1

and

(
3

2
,

1

2

)
1,2

You get the same J levels, but the grouping is clearly different, in the jj-case you get two groups of 2 and
in the LS-case you get one group of one and one group of three. In real atoms jj-coupling will be present in
heavy atoms.

3.3.2 LS coupling

LS, or Russel-Saunders coupling is given by:

l1 + l2 + l3 + · · · = L

+

s1 + s2 + s3 + · · · = S

↓
J

Then the example gives:

L = 1 + 0 = 1

S = 1/2 + 1/2 = 0, 1

J = 1 + 0 = 1

or J = 1 + 1 = 0, 1, 2

This then gives the states:

1P1 and 3P0,1,2

You get the same J levels, but the grouping is clearly different, in the jj-case you get two groups of 2 and in
the LS-case you get one group of one and one group of three. In real atoms LS-coupling will be present in
light atoms.

We use LS in SoM, unless stated otherwise.

The state of an electron is spilt into different parts
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3.4 Hund’s rules Summary by Ellis de Wit

n1l1 n2l2 n3l3

electronic
configuration

2S+1L

term

J

level

MJ

state

ML = ml1 +ml1 +ml3 + . . .

MS = ms1 +ms1 +ms3 + . . .

MJ = ML +MS

3.4 Hund’s rules

For 2 and 2 electrons only Pauli is satisfied if L+ S = even.
Hund’s rules are only applicable to find the ground term of the ground electronic configuration. The rules:

1. Only partially filled shells

2. the term with maximum multiplicity has the lowest energy, which is the term with maximum S, and
maximum number of unpaired electrons.

3. For a given multiplicity, the term with the largest value of the total orbital angular momentum quantum
number L, has the lowest energy.

4. The ground level is found by:

• If the outermost subshell is half-filled or less, then the lowest J lies lowest in energy.

• If the outermost shell is more than half-filled, the level with the highest value of J , is lowest in
energy.
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